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Abstract

Virtualization improves resource efficiency and ensures se-

curity and performance isolation for cloud applications. To

that end, operators today use a layered architecture that runs

a separate network stack instance in each VM and container

connected to a separate virtual switch. Decoupling through

layering reduces complexity, but induces performance and

resource overheads that are at odds with increasing demands

for network bandwidth, communication requirements for

large distributed applications, and low latency.

We present Virtuoso, a new software networking stack

for VMs and containers. Virtuoso performs a fundamental

re-organization of the networking stack to maximize CPU

utilization, enforce isolation, and minimize networking stack

overheads. We maximize utilization by running one elas-

tically shared network stack instance on dedicated cores;

we enforce isolation by performing central and fine-grained

per-packet resource accounting and scheduling; we reduce

overheads by building a single-layer data path with a one-

shot fast-path incorporating all processing from the TCP

transport layer through network virtualization and virtual

switching. Virtuoso improves resource utilization by up

to 50%, latencies by up to 42% compared to other virtual-

ized network stacks without sacrificing isolation, and keeps

processing overhead within 11.5% of unvirtualized network

stacks.

1 Introduction
The cloud leverages virtualization to improve resource uti-

lization while ensuring isolation for security and perfor-

mance. Guests running as virtual machines and containers

enable deployment of separate applications from multiple

tenants onto shared physical hosts. The hypervisor and

operating system allocate and manage the shared physical

resources such as processor cores, memory, and the network

link. For network communication, each VM and container

runs a separate network stack instance that sends and re-

ceives packets through a central virtual switch. VMs send

packets from their OS stack through virtual NICs to the hy-

pervisor, while containers run in isolated network name

spaces also generating raw guest network packets, then for-

warded through a virtual interface to a kernel or userspace

virtual bridge or switch. The operator configures the virtual

switch to implement network virtualization features, such as

tunneling, bandwidth limits, and security checks, and pass

packets to and from the physical network.

This results in a layered architecture where packets pass

through a series of different separate loosely-coupled com-

ponents, such as the guest transport layer, network layer,

virtual NIC, virtual switch, etc. This layered architecture

has worked well but incurs significant performance and re-

source overheads. On one hand, decoupling through layering

simplifies development, configuration, and management. De-

composition into separate layers also allows for a certain

level of performance isolation, as guest stacks may be iso-

lated by dedicating a number of CPU cores to each guest. On

the other hand, demands for increasing network bandwidths

and for low latency communication are expensive to meet

in this architecture. 100 Gbps links are commonplace and

400 Gbps are already available. At the same time, modern

cloud applications demand µs-scale network latencies [51].

Coupled with the slow down of Moore’s Law, any wasted

CPU cycles due to network processing—incurred either due

to underutilized dedicated CPU resources or inefficiencies in

network stack processing—are particularly problematic.

In this paper, we argue that the existing layered virtual

network stack architecture unnecessarily sacrifices resource

efficiency and performance, in particular for isolation. The

typical static CPU allocation for guests (VMs or containers)

requires users to provision cores for peak traffic. However,

guests do not serve peak traffic at all times, leading to poor

CPU utilization because of idle capacity allocated for net-

work processing in non-peak times. Additionally, the layered

architecture providing network virtualization and isolation

on packet streams from per-guest network stacks add signif-

icant overhead to the networking datapath. The hypervisor

individually mediates every packet sent or received by the
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guest, increasing CPU overhead and communication latency.

Up to 60% of the time spent transmitting a packet can be

from transferring packets from the guest virtual interface to

the physical interface [26, 27].

We argue that these overheads are not inherent to network

virtualization, but are an artifact of the existing architecture.

To that end, we propose a fundamental re-organization of

the full virtual network stack architecture. We present Vir-

tuoso, a new, shared software networking stack for virtual

machines and containers that maximizes CPU utilization,

while minimizing network stack processing overheads and

enforcing isolation. Virtuoso provides drop-in compatibility

for sockets and the TCP protocol. Our evaluation shows that

Virtuoso can improve resource utilization by up to 50% while

increasing throughput by up to 51% over optimized layered

stacks, while still ensuring performance isolation at µs-scale
tail latencies. Virtuoso also achieves high absolute through-

put, incurring only a 14% throughput penalty compared to

state-of-the-art bare-metal network stacks.

The first Virtuoso key idea is to use only one network
stack instance in the hypervisor, shared by all guests. Shar-

ing improves CPU utilization for bursty workloads, as the

shared stack elastically allocates CPU resources just-in-time,

rather than statically provisioning CPU bandwidth for each

guest’s peak. To provide microsecond-scale performance

isolation in a shared network stack, we leverage fine-grained
per-packet resource scheduling. Virtuoso accounts CPU cycles

and network bandwidth spent by each processed packet to

the respective guest resource budget, scheduling each guest

on a per-packet basis. These fine-grained mechanisms in-

cur minimal performance overhead but enable performance

isolation even for microsecond-scale latencies. Finally, a co-
alesced data path combines all virtual network processing

from transport down to virtual switching. The coalesced data

path in Virtuoso collapses all layers in the stack, minimizing

processing by avoiding overheads for intermediate queuing,

implementing the same functionality as conventional layered

stacks considerably faster and with fewer processor cycles.

We further split the data path into a fast- and a slow-path.
Virtuoso processes common packets of established connec-

tions on the fast-path in one-shot, further reducing necessary
state and simplifying performance isolation through short,

predictable code paths. Uncommon cases are handled on the

slow-path at a small performance penalty.

Our contributions are the following:

• The design of a new shared TCP network stack for vir-

tual environments that improves resource utilization and

leverages fine-grained scheduling for isolation.

• One-shot network virtualization fast-path incurring mini-

mal virtualization overhead.

• Virtuoso prototype implementation for Linux and QEMU.

• Performance analysis of Virtuoso prototype to quantify the

resource utilization improvement and overhead reduction,

and confirming performance isolation and low tail latency.

We will release Virtuoso as open-source software.

2 Background

Network communication faces unique challenges in virtual-

ized environmets. In this section, we first discuss the con-

ceptual requirements and goals, then move on to the conven-

tional implementation and its shortcomings, and finally to

prior approaches addressing a subset of these shortcomings.

2.1 Network Virtualization Concepts

Virtualization aims to facilitate management and consoli-

dation of host and network resources. Multiple guest VMs

or containers with separate network addresses share a sin-

gle physical host, network controller, and link. Similarly,

multiple separate virtual networks share the same physical

network. Multiple separate tenants can manage containers,

VMs, and virtual networks, while yet a separate operator

maintains the shared physical infrastructure. Tenants ex-

pect to flexibly configure and use their virtual infrastructure,

e.g. using custom addressing, routing, and protocols. In-

frastructure operators must multiplex the physical resources

providing isolation to produce the illusion of completely

separate infrastructure to mutually non-trusting tenants.

On the hosts this requires virtual switching, moving pack-

ets between the various guests and the shared physical net-

work in a controlled and safe way, and enforcing all necessary

processing for security and isolation. In the network, virtu-

alization requires tunneling protocols such as VXLAN, [42],

NVGRE [12], and GENEVE [14] to encapsulate packets, en-

abling use of separate protocols and routing on the physical

network. Virtual switching also assigns appropriate physical

network addresses based on virtual network addresses.

Operator Goals. The complete network communication

infrastructure aims to meet the following operator goals:

• Performance isolation. Guests must not use more than

their allocated resources, and must not affect throughput

or latency of other guests.

• High resource utilization. Resources are expensive, so
network virtualization must avoid idle resources. This also

implies that host infrastructure must scale to many guests

per physical server to utilize all available resources.

• Security. Tenants must not be able to see or tamper with

other tenant’s packets. Similarly the physical network

must be protected from tampering by tenants.

Tenant Goals. In addition, there are two tenant goals:

• Low latency.Modern applications require low common-

case and tail latency communication on the order of µs.
• High throughput. Network virtualization must achieve

high throughput and keep up with rising network speeds,

on the order of hundreds of Gbps.
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Fig. 1: Layered and independent virtualized network stacks.

2.2 Status Quo: Layered Silos

Traditionally, network virtualization is implemented as a

deeply layered architecture (Fig. 1). Packet processing is

divided between independent network stacks in each guest

(managed by the tenant), multiplexed by the virtual switch

running as the lowest layer on the host (managed by the

operator). Guests send and receive raw network packets

through their conventional OS network stack via the as-

signed virtual NIC (vNIC) just as in a native deployment.

Containers run in separate network namespaces typically

communicating with the outside through veth pairs [22],

while VMs run separate OS instances and use virtual NICs

such as virtio-net [45] implemented by the hypervisor.

The virtual switch (vSwitch) takes packets sent on the guests’

vNICs, routes and encapsulates them for the physical net-

work, and then sends them out through the host’s physical

NIC. Receiving packets works symmetrically: packets arrive

on the physical NIC, the vSwitch inspects and decapsulates

them to determine the virtual network, and then looks up

and passes them to the corresponding vNIC.

This architecture largely evolved organically. Guests com-

pletely re-use the existing network stack originally built

for physical systems. vNICs optimized for virtualization re-

placed emulated physical NICs to improve performance, but

otherwise the stack remains unchanged.

Advantages. Separately developed, maintained, and oper-

ated virtual switches simplify implementation and enable

flexible deployment with different implementations. Typi-

cally data centers run guest VMs and containers on dedicated

cores. Thus, independent per-guest stacks effectively silo

applications, minimizing inter-VM performance interference.

Independent stacks can easily account for the CPU time and

network bandwidth used by each VM. Much of the protocol

processing happens in the guest and is thus automatically ac-

counted for and isolated. Early demultiplexing also prevents

priority inversion for more complex scheduling policies, as

packet priorities are only known after demultiplexing [29].

Disadvantages. On the other hand, independent network

stacks often over-provision resources. For the typically

bursty workloads, tenants have to provision VMs with

enough resources (especially cores) for peak bandwidth.

While VMs can share resources such as CPU cores, this is not

compatible with µs-scale latency requirements because of

long and expensive VM context switches. Cloud VMs, in par-

ticular, typically exclusively provision processor cores, with

only exceptions for the smallest and cheapest instance types.

VMs typically only rarely operate at peak traffic, frequently

leaving resources underutilized.

Layered network stacks also incur overheads increasing

latency and wasting precious CPU cycles [20,34]. Each layer

adds indirection, often through queues or other data transfer

mechanisms. For example, the TCP layer might generate

segments that then queue up lower in the stack because of

vSwitch-enforced bandwidth limits. Further, independent

layers often repeatedly look up similar information for pack-

ets [29] in multiple layers in different data structures, e.g.

guest IP routing, ARP lookup, vSwitch MAC to physical IP

translation, physical IP to physical MAC.

Finally, even layered stacks include significant processing

before multiplexing points that is not performance isolated,

e.g. in the vSwitch. This is a source of performance cross-talk

between guests and tail latency [44].

Summary. Layered stacks face two key challenges:

First, there is a trade-off between isolation and resource
utilization. Multiplexing resources early with independent

stacks facilitates isolation but fails to capitalize on finer-

grained resource-sharing opportunities because resources

are siloed from the start and cannot be pooled at lower levels.

Second, layering provides modularity but leads to over-
heads in packet processing. These overheads are exacerbated

by rising network speeds, microsecond tail-latency require-

ments [4], and the large scale of datacenter applications.

2.3 Prior Work

Prior work has investigated these challenges, but fails to

satisfy all goals. In particular, providing high resource uti-

lization with minimal interference for µs-scale workloads
remains a challenge.

Reducing layering overheads. A range of work seeks to

avoid layering overheads and reduce indirection in packet

processing in specific layers. These solutions span kernel

bypass [3,7,18,34,51], kernel offload via eBPF [13,37,52], zero-

copy methods [3, 21, 24, 34], new NIC interfaces [8, 35, 39, 47],

and one-shot unlayered fast-paths [20,40]. These approaches

do not completely solve performance overheads or isolation

across the virtualized stack.

Hardware offload. Offloading different parts of network

virtualization processing can significantly reduce overheads.

Recent data center NICs support offload for VXLAN, GEN-

EVE, and NVGRE [31] en-/de-capsulation. Complete offload
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Fig. 2: TX and RX operations go through the fast-path and

control operatons go through the slow-path. Legacy applica-

tions go through the layered legacy path.

of virtual switching fast-paths can reduce overheads [2, 10,

25, 32] further and enable direct HW NIC access for guests

through SR-IOV [2, 10]. However, these approaches ei-

ther rely on fixed hardware, limited to specific protocols

and features [10], or themselves leverage multi-core Smart-

NICs [2,25,32], resulting in another layered architecture with

the challenges discussed above. Hardware offload also gives

rise to other performance isolation challenges with shared

hardware resources, such as the NIC, PCIe interconnect, and

IOMMU [1]. Finally, software solutions are relevant because

of the comparative flexibility and simple deployability.

3 Virtuoso Approach

Virtuoso (Fig. 2) eliminates the tradeoff between resource

efficiency and isolation by sharing a network stack among

guests and implementing isolation in a single layer. The

shared stack allows Virtuoso to elastically pool resources

and increase utilization, while fine-grained resource account-

ing and scheduling ensure performance isolation. Virtuoso

uses a multi-threaded data fast-path with dedicated cores for

common case send and receive operations, and a separate

slow-path for data path exceptions and control operations.

The fast-path combines all network virtualization and packet

processing layers up to and including the TCP transport layer,

minimizing the path between the guest application and the

host NIC. The fast-path implements en-/de-capsulation and

de-multiplexing, and combines all common-case process-

ing. Only the sockets interface remains in the guest, but is

tightly integrated with guest applications in guest userspace

through a dynamic link library.

3.1 Design Principles

To achieve our goals, we employ the following principles:

Shared network stack for elastic resource utilization.
Instead of partitioning network processing to multiple guest

silos and the hypervisor, Virtuoso places one shared network

stack instance in the hypervisor. Externalizing network pro-

cessing allows guests to serve the same workload with fewer

cores; we instead re-allocate some of these cores for the

shared stack. This resource consolidation particularly im-

proves utilization for bursty workloads by being elastic; the

larger shared pool of cores can absorb bursts better than

multiple static per-guest pools [49].

Fine-grained per-packet scheduling for isolation. In-

stead of coarse-grained resource management via cores dedi-

cated to guests, we employ central and fine-grained resource

accounting and scheduling for each individual packet to en-

sure isolation in the shared network stack. Virtuoso precisely

accounts processor cycles and network bandwidth spent for

each processed packet to the respective guest resource bud-

get. Virtuoso leverages global visibility across all guests

combined with accurate resource accounting to implement

fine-grained per-packet scheduling that enforces tight isola-

tion policies. Scheduling is implemented centrally at a single

layer in the system, minimizing crosstalk [23, 44]. This nim-

ble mechanism incurs minimal performance overhead but

enables performance isolation even for microsecond-scale

latencies.

Single-layer data path. Instead of layered processing, Vir-

tuoso leverages a single-layer data path, coalescing all net-

work processing from the TCP transport layer down to net-

work virtualization and virtual switching, for receive and

transmit. Guest applications interact directly with the data

path through efficient shared memory queues, by linking a

dynamic link library in guest userspace that provides the TCP

sockets API. This allows Virtuoso to implement the same

functionality as conventional layered stacks considerably

faster and with fewer processor cycles by communicating

directly with the single-layer data path.

One-shot fast-path. We further streamline the Virtuoso

data path via a one-shot fast-path. For each TCP connection,

one-shot processing pre-computes rarely changing processing

state, such as guest and physical IP routing and tunnel state,

storing it in the fast-path, reducing per-packet processing

overhead for common packets of established connections.

Handling a limited number of common cases in the fast-

path also simplifies performance isolation through short and

predictable code paths. For example, when sending a TCP

segment from the guest on a virtual TCP connection, the fast-

path can directly create a physical packet with all relevant

virtualization headers and send it via the host NIC in a short

operation. Uncommon cases are handled on a separate slow-

path at a small performance penalty.

4 Detailed Virtuoso Design

In the Virtuoso network stack, a multi-core fast-path polls

guests for new packets and parses and generates headers

in a single layer for low-overhead packet transmission and
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Fig. 3: Virtuoso uses cached OvS state in the fast-path to

steer packets to the proper VM’s payload buffer.

reception. The fast-path accesses each guest library’s shared

memory region and aggregates packets from multiple guests

into a batch to increase utilization. A separate slow-path

core handles control operations and exceptions. Dividing

tasks between a fast-path and a slow-path allows us to reduce

overheads by streamlining the fast-path. For initialization

of these shared memory channels between applications and

Virtuoso during startup, we leverage a modified hypervisor

for guests and the host OS for containers. We describe these

implementations later (§5.3, §5.2). After shared memory

regions are set up, there are no differences for the application-

Virtuoso data path between virtual machines and containers.

Hence, we refer to them collectively as guests.
In this section, we give detailed descriptions of the dif-

ferent components of Virtuoso. We start by describing how

we integrate efficient network virtualization in a multi-core

fast-path (§4.1). We then describe how we track each guest’s

resource usage on individual fast-path cores through a per-

guest budget (§4.2), followed by a discussion of how we use

this information to coordinate guest resource budget alloca-

tion across fast-path cores centrally through our slow-path

(§4.3). We then describe how we build fine-grained schedul-

ing based on the per-guest resource budgets (§4.4). Finally,

we describe how we protect the Virtuoso network stack on

the host when sharing it among guests (§4.5).

4.1 One-shot, Single-layer Transport

Single-layer transport. To improve performance and min-

imize overheads, Virtuoso combines all processing from the

TCP transport layer all the way down to network virtualiza-

tion into a streamlined one-shot fast-path (Fig. 3), for send

and receive. Separating out minimal common case process-

ing in a minimal fast-path enables performance optimization,

while a separate slow-path ensures that less frequent cases

can still be handled. Regular data transfer packets for es-

tablished TCP connections exclusively use this optimized

data path, while packets for unknown connections or other

protocols pass through the slow-path. In the case of new

connection requests, the slow-path then sets up one-shot

fast-path state for the connection so future packets remain

on the fast-path (Fig. 4).

On receive, the fast-path parses the packet according to the

expected format, configured by default to TCP over IPv4 on

the guest side, encapsulated in GRE [9] over UDP, IPv4, and

Ethernet on the physical network. The fast-path then lever-

ages the corresponding connection identifiers, TCP ports,

guest IPs, and tunnel ID to look up the consolidated flow

state. After validating the packet against the state, the fast-

path directly stores the TCP payload in the guest flow buffer

and enqueues a notification in the corresponding guest re-

ceive queue. Finally, if necessary, we reformat the packet

by swapping addresses and tweaking the TCP header into a

response TCP acknowledgement.

Similarly for transmit, once Virtuoso schedules a flow to

transmit a packet, the flow state directly provides all neces-

sary state to directly assemble the complete packet with all

headers for immediate transmission via the NIC. Headers

are divided between inner and outer headers. The inner TCP

and IP headers includes the source and destination IP address

and port on the guest (virtual) network. The outer headers

include the GRE encapsulation with the key field to identify

the network [6] wrapped by the outer UDP and IP header

and corresponding physical network source and destination

IP addresses and ports, finally wrapped by Ethernet and the

necessary peerMAC address. Virtuoso stores these key fields

in the consolidated flow state.

One-shot fast-path processing. We implement this pro-

cessing as straight-line code withminimal control flow (other

than exceptions for rare cases) and no packet modifications

until acknowledgements [20]. Virtuoso processes packet in

one shot without intermediate queuing or access to com-

plex data structures other than the consolidated flow state.

We skip some steps for conventional network virtualization

such decapsulation completely. Other steps we combine with

already necessary related steps previously in other layers,

such as combining the virtual switching table lookup with

the TCP flow state lookup.

Our state consolidation optimizations rely on most of this

state, such as guest routing, tunneling, host addressing and

routing, remaining typically unchanged over the life of a

connection. Thus it can be pre-computed and stored with all

other necessary state when a new connection is established.

This is related to other fast-path caches for virtual switching

state in systems such as Open vSwitch [33]. Except Virtuoso

explicitly and eagerly manages this state, adding it, updating

it, and removing it as necessary instead of relying on misses

and invalidations. This also implies that changes to this state

are more expensive in Virtuoso than in other systems, as

many changes to individual connection state instances on

the fast-path may be required for an individual change to

the underlying state.
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when there is a miss.

Slow-path for remaining processing. The Virtuoso slow-

path handles all packets not handled by the fast-path. This

includes packets that are not TCP data packets, TCP control

packets to open and close connections as well as non-TCP

packets. For the network virtualization slow-path and con-

trol plane we leverage the existing Open vSwitch [33]. First

off, Virtuoso leverages OvS as a virtual switch for slow-path

packets, by first passing them, truncated to the headers, to

OvS. OvS then asynchronously sends back the packet with

the correct destination guest and necessary state update for

the virtualization related state for future fast-path processing.

The Virtuoso slow-path then processes the switched packet,

and if it is a new TCP connection, combines the received

virtualization fast-path state with the necessary TCP state,

Non-TCP packets are forwarded to guests through legacy

interfaces (vNICs or veth) for processing in the legacy stack.

4.2 CPU Resource Accounting

Core-local resource accounting. The first step towards

achieving isolation is to accurately account for resource use.

We are particularly concerned with processor cycles spent on

network stack processing on behalf of each guest. Each fast-

path core tracks resources available to and used by individual

guests through a local budget table, storing each guest’s

resource budget on that core.

Batch processing in three main tasks. The Virtuoso fast-

path performs three main CPU-intensive tasks for guests:

receiving packets (RX), polling guest transmit queues (POLL),

and packet transmission (TX). RX dequeues incoming pack-

ets from the NIC, parses the packets, and implements the

necessary TCP processing before forwarding the payload to

the guest. POLL checks outgoing queues from guest appli-

cations to the fast-path for new transmission request. TX

assembles complete network-virtualized TCP packets and

enqueues them in the NIC. For efficiency, these tasks execute

in batches, generally from multiple guests. The batch size

is a compile-time parameter and primarily depends on the

system’s cache hierarchy; we chose 16 empirically as the

value that yielded the highest throughput for our setup.

Lightweight accounting with TSCs. Virtuoso measures

CPU consumption by taking CPU time stamp counter (TSC)

readings at the start and end of processing for each batch.

Reading the TSC is lightweight and precise. Virtuoso breaks

down the TSC total to separate guests, based on each guest’s

number of packets. As per-packet processing costs are gen-

erally similar, this represents a reasonable trade-off between

overhead for accounting and accuracy, as we will show later

(§6.2, §6.3). Virtuoso then subtracts the cycles consumed

from the respective guest’s resource budget. To avoid fre-

quent synchronization and coherence overhead, we maintain

separate guest budget tables on each fast-path core.

4.3 Central Resource Allocation

A separate slow-path core periodically replenishes the per-

core budgets on the fast-path, leveraging its global view. Sep-

aration into a parallel de-centralized fast-path and a central

slow-path enables scalable and efficient coordination of the

very frequently accessed per-core budgets. The slow-path

replenishes the total budget in periodic 1 ms intervals and

distributes the new budget to each guest. The distribution

among guests is controlled by a guest weight wg, configured

by the operator. By default each guest has the same weight.

We compute budget updates ug for guest g by recording

the timestamp t ′ for the current update and the timestamp

t for the previous update. The allocator scales the elapsed
time t ′− t by a constant boost B. B compensates for any

fast-path CPU cycles not explicitly accounted to any guest

by Virtuoso to avoid over-committing processor cycles. We

found the fraction of accounted cycles to be 94% (and set

B = 0.94), with minimal processing not related to specific

guests. This includes functions, such as scaling fast-path

cores up and down and checking if a core can block. We

multiply the product of the boost and elapsed cycles by the

guests’s wg, divided by the sum of the weights of all n guests.

ug =
B(t ′− t)wg

∑
n
k=1 wk

(1)

Preventing guest from accumulating budget. The oper-

ator also configures a budget cap C for all guests. Capping

the budget prevents guests from accumulating arbitrary bud-

gets during long periods of low utilization and starving other

guests in bursty periods of activity. C restricts the number

of CPU cycles Virtuoso can spend on behalf of a guest per

fast-path core between replenishments. Thus, the Virtuoso

slow-path finally calculates the updated per-core budget b′gc
for guest g on core c as

b′gc = min{C,bgc +ug} (2)

Minimizing synchronization overheads. We update the

fast-path value by performing an atomic add to the guests
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Fig. 5: Fast-path cores spend a guest’s local budget as they

execute processing tasks. All tasks account for resource

consumption, while POLL and TX tasks schedule based on

guest budgets. The slow-path periodically refills budgets.

entry in the budget table. This avoids the need for synchro-

nization on the fast-path, and only occurs periodically.

4.4 Fine-grained Scheduling

Virtuoso performs fine-grained scheduling to enforce per-

formance isolation based on per-guest CPU cycle budgets

(Fig. 5). The scheduler performs hierarchical scheduling, first

it chooses which guests to perform work for, and for sending

packets determines which of the guest’s flows get to trans-

mit next. On the fast-path, before starting a task on behalf

of a guest, the core consults the guest’s budget, and if it is

zero or negative moves on to do work for a different guest.

The central resource allocator on the slow-path periodically

replenishes guest budgets (§4.3).

Bounded fast-path simplifies scheduling. The obser-

vation at the center of our approach is that all individually

scheduled tasks are strictly bounded, on the order of 200–500

cycles depending on packet sizes. This provides us with two

key advantages. First, preemption is not necessary, as individ-
ual packet processing tasks complete very quickly. Second,

fine-grained batch scheduling and accurate accounting enable
low tail latency and isolation, even without knowing concrete

task lengths. Tasks are all similarly sized, and, after each

task completes, the next scheduling decision can compensate

based on the updated budget. Even if a task overruns the

budget, it will only be by a small amount of cycles and Vir-

tuoso still precisely accounts for this with negative budgets,

akin to deficit round-robin scheduling [41].

These two insights enable fine-grained scheduling for low

tail latencywithout preemption overhead in Virtuoso. In con-

ventional layered network stacks, switching between guests

requires context switches, which disrupt CPU pipelines,

cause cache overheads, and demand expensive state saving

and restoration [15]. In Virtuoso, all necessary processing

state for each connection is stored in the corresponding flow-

state data structure in the shared stack. As a result, switching

Algorithm 1 POLL Scheduler

function poll_vms(vms)

n← batch_size

for vm in vms do
if vm.budget > 0 and n > 0 then

x← poll_contexts(vm.contexts, n)

n← n - x

function poll_contexts(contexts, n)

i← 0

for context in contexts do
if i < n then

x← fetch_packets(context.tx_head, n - i)

i← i + x

to processing a packet for a different guest incurs minimal

overhead, as it does not require any context switch.

Hierarchical scheduler controls guests and flows. Vir-

tuoso uses a two-level hierarchical scheduler. The first level

decides which guest should be serviced next and the sec-

ond level decides what flow (TX) or transmit queue (POLL)

from the selected guest should be scheduled, using different

policies. This allows us to control resource allocation be-

tween guests and between guest’s flows and transmit queues.

For RX, Virtuoso only performs resource accounting, as the

specific guest is not known before initial processing of the

packets, preventing scheduling. The following paragraphs

dive into detail on scheduling Virtuoso processing tasks.

Batch-scheduling POLL. Virtuoso polls guest transmit

queues for new connection send requests. The fast-path polls

each guest in a batched round-robin fashion to balance effi-

ciency and low tail latency (Alg. 1). First, the fast-path core

selects the next guest and then starts polling the guest’s trans-

mit queues, until the batch is full or all the guest’s queues

are empty, or the guest resource budget is used up. If the

batch is not full, the scheduler moves on to the next guest.

Pulling multiple transmit requests from a queue in one

batch significantly reduces per-request overheads for queue

access. Consolidating tasks for a specific guest within a batch

also increases resource accounting accuracy as work from

fewer guests is aggregated into the same batch. But even

across guests, processing requests in batches enables Virtu-

oso to improve efficiency by avoiding cache misses on key

memory accesses through group prefetching [19]. Group

prefetching processes individual requests in a batch in phases,

breaking before potentially expensivememory accesses, such

as shared queue slots or flow state, and issuing prefetch in-

structions. By the time one phase has been executed for all

requests, prefetch instructions for the first packet will hope-

fully have completed, thereby avoiding the cost of demand

misses. During the processing of these transmit requests, the

Virtuoso transport layer schedules the corresponding flows

for packet transmission through TX tasks.
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Algorithm 2 TX Scheduler

function schedule_vms(vms)

n← batch_size

for vm in vms do
if vm.budget > 0 and n > 0 then

x← schedule_flows(vm.flows, n)

n← n - x

function schedule_flows(flows, n)

i← 0

for flow in flows do
if i < n then

x← schedule_packets(flow.packets, n - i)

i← i + x

Scheduling TX for per-guest fairness. Virtuoso also

schedules TX tasks with a similar batched hierarchical ap-

proach (Alg. 2). The scheduler first chooses the next guest,

and then the guest’s next flow to transmit a packet. In the

first level of the scheduler the round-robin algorithm de-

cides which guest should send next. The second level instead

schedules flows according to a priority queue that tracks the

earliest time when each flow should send next. The TCP

processing logic determines these timestamps with a split

fast-path/slow-path congestion control scheme [20]. These

timestamps also automatically ensure that a guests’ flows are

serviced fairly. Guests without available budget are skipped

until the budget is replenished.

Scheduling RX is avoided. Virtuoso does not schedule

RX tasks and instead only performs resource accounting. RX

performs complete receive processing, starting with pulling

a packet from the NIC receive queue. As NIC receive queues

do not distinguish guests, Virtuoso cannot knowwhich guest

a packet will be for until significant processing, including

the flow state lookup, has been performed. At this point,

re-enqueuing the packet on a separately scheduled per-guest

queue would incur resource overhead comparable to just

finishing processing.

Guests can still receive packets with a depleted budget,

but Virtuoso keeps track of the cycle deficit accrued when

later replenishing the budget. Guest that deplete their budget

on RX tasks as a result have fewer cycles available for POLL

and TX tasks. For the workloads we tested, this results in the

overall system self-correcting, as senders that do not receive

replies will stop sending.

An alternative is to drop received packets once the guest

has been identified and is found to have no budget for process-

ing the packet. However, while this might improve scheduler

accuracy, it comes at the cost of efficiency. Getting to the

point of dropping the packet, already incurs significant pro-

cessing cycles. TCP will later re-transmit any packet that

has been dropped, again requiring resources for processing

this re-transmitted packet.

4.5 Secure Shared Stack

Virtuoso processes packets from multiple guests and appli-

cations in the same network stack. Resource accounting and

scheduling mechanisms provide performance isolation. For

this we rely on shared memory queues between individual

application cores and the fast-path, as well as a separate

slow-path for more expensive control operations, akin to

TAS [20] and SNAP [43]. However, we also need security

enforcement while enabling efficient direct communication

between applications and the Virtuoso stack.

Protecting memory regions. Virtuoso ensures security

isolation for the guest and application interface through

memory isolation. We allocate different guests’ queues and

connection buffers in separate shared memory regions only

mapped into a single guest and the fast-path. To avoid leaks

due to dynamic remapping and ensure resource isolation,

Virtuoso statically pre-allocates the complete shared mem-

ory region when the guest starts. Virtuoso also has a narrow

shared memory interface comprising just guest receive and

send queues along with connection payload buffers. This

narrow interface provides no other attack vectors, such as

complex data structures that could interfere with Virtuoso.

5 Implementation

Virtuoso runs in host userspace as a separate service and pro-

vides all features of a typical TCP stack to guest applications.

Virtuoso maintains TCP protocol and sockets API drop-in

compatibility. For fast NIC access, we use DPDK [16]. We

build our prototype using TAS [20] as a basis. We heavily

modify and extend the TAS fast and slow-path, but retain

the sockets emulation library unmodified. Virtuoso supports

guest VMs as well as guest containers. The Virtuoso proto-

type comprises 20,918 lines total, 4,669 lines for the fast-path,

5,536 lines for the slow-path, 2,437 lines for the hypervisor

integration, and 1,029 lines of modification to OvS.

5.1 Support for Multiple Guests

To extend TAS to securely connect to multiple guests, we

modify it to use multiple separate shared memory regions

and Unix sockets. Virtuoso creates separate shared memory

regions on the host for each guest. These regions contain

transmit request and receive notification queues, as well

as per-flow RX and TX circular payload buffers. During

guest initialization, Virtuoso needs to pass the newly created

shared memory region to the guest. As in TAS we implement

this using Unix domain sockets, that carry a handshake along

with the shared memory file descriptor. Unlike TAS, Virtu-

oso exposes separate listening Unix sockets for each guest,

allowing it to securely identify which guest is connecting,

assuming sufficient access control on the host.
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5.2 Virtuoso with Containers

Given that guest containers share the same host operating

system as Virtuoso, connecting applications in guest con-

tainers is simply a matter of mapping the respective guest

Unix socket into the container. After this any container

guest application can interact with Virtuoso just as a native

application with exactly the same performance.

5.3 Virtuoso with Virtual Machines

For virtual machine guests, initialization is more complex

as unix sockets and file descriptors are by definition local

to the host. Virtuoso instead integrates with the hypervisor

to directly map shared memory regions via a dummy PCI

device. In the VM, a Virtuoso guest agent implements a

user space driver for this dummy device and translates the

interface into a compatible Unix socket and shared memory

file descriptors again, avoiding the need for applications to

distinguish between native, container, and VM operation.

We leverage QEMU [36] with KVM and its Inter-VM

Shared Memory Device (IVSHM) [17] to implement the hy-

pervisor part of the Virtuoso integration. IVSHM already

allows an external application to send a shared memory file

descriptor and eventfds for bi-directional interrupts to QEMU

that are then exposed as a PCI device with thememory region

as a directly memory mapped BAR. For ease of integration,

we implement this as a separate host proxy process that

connects to QEMU and Virtuoso.

In the guest we implement a Virtuoso guest agent, that

leverages the vfio-pci [46] kernel module to implement a user

space driver for the dummy PCI device. vfio-pci provides

a file descriptor that the application can mmap for access

to the BAR, along with eventfds for interrupts. The guest

agent then creates a listening unix socket, and during the

handshake passes the file descriptors directly to applications.

This results in a directly shared memory region between

Virtuoso on the host, and applications in the guest VM. As

a result, fast-path interactions with Virtuoso incur no addi-

tional overheads compared to containers or native applica-

tions.

5.4 OvS Slow-path

We use OvS for virtualization management, to identify tun-

nelling information, and to determine the destination VM for

a flow. To that end, we modify OvS to exchange packets and

control information with Virtuoso. In OvS we implement

custom transmit and receive netdev-provider ports. The re-

ceive port polls Virtuoso for new packets and passes them

to OvS. OvS then performs internal matching based on the

packet metadata and directs it to a transmit netdev-provider

port. The transmit port holds tunnelling information for a

packet and establishes a message queue with Virtuoso to

dispatch this information. This message queue exchanges

inner and outer IP addresses for encapsulated packets, tun-

nel IDs from GRE headers, and the appropriate ID for the

destination VM.

6 Evaluation
In this section we evaluate how well Virtuoso addresses the

goals outlined in §2. To that end, our evaluation aims to

answer the following questions:

• Does sharing the stack improve resource utilization? (§6.1)

• Can fine-grained scheduling and resource accounting en-

sure isolation of tenants despite sharing resources? (§6.2)

• How close can optimized one-shot virtualization perfor-

mance get to native un-virtualized stacks? (§6.3)

• Does Virtuoso scale to serve many guests? (§6.4)

Testbed. We configure two identical machines as client and

server. They are directly connected with a pair of 100Gbps

Mellanox ConnectX-5 Ethernet adapters. Both machines

have two Intel Xeon Gold 6152 processors at 2.1 GHz, each

with 22 cores for a total of 44 cores and 187GB of RAM per

machine. We run Linux kernel 5.15 with Debian 11.

Baselines. We compare Virtuoso against a number of base-

line configurations. For these we use two existing network

stacks, the default in-kernel Linux network stack, and the

optimized TAS TCP stack. Depending on the configuration,

we run these bare metal, or in QEMU/kvm virtual machines

with virtio-net vNICs connected to OvS. We configure OvS

with the DPDK backend and use vhost-user between QEMU

and OvS to get the best baseline performance. For contain-

ers, we directly mount the respective Unix socket into the

containers for Virtuoso.

Focus on VMs. For most of our evaluation we focus on

Virtuoso with virtual machine guests, rather than container.

The dominating fast-path interaction performance is identi-

cal between Virtuoso VM guests and container guests, while

some slow-path interactions in the VM case are more expen-

sive than for containers (§6.3). At the same time we found

Virtuoso to provide higher relative benefits when comparing

to existing container stacks than compared with VM stacks.

Thus, Virtuoso with VMs provides a conservative evaluation

and performance comparison.

6.1 Sharing the Stack Increases Utilization

We start off by measuring resource utilization with bursty

guest workloads. For this we provision four guest VMs with

echoservers responding to RPCs. Clients generate bursty

high-low traffic, separately saturating each guest during

peaks, and sending 2.5M requests per second and guest dur-

ing low periods. We then vary the degree of overlap, i.e. how

many of the guests burst concurrently, from 50% all the way

to 100%. At 50% burst overlap we have two guests bursting
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Fig. 6: Resource efficiency with bursty guests and a varying

number of Virtuoso fast-path cores. Virtuoso achieves higher

throughput with the same or less resources.

every 50 seconds for 10 seconds. At 75% overlap three guests

burst at the same time and one guest bursts by itself. At 100%

overlap all guest burst at the same time.

As a baseline, we use separate TAS network stacks in

each guest connected to OvS on the host (OvS-TAS). For the

baseline we provision each guest with 5 cores, and configure

the TAS instances to use one fast-path core. For Virtuoso we

instead provision each guest with 4 cores, and 2, 3, or 4 of

the saved cores as shared fast-path cores for Virtuoso.

Fig. 6 shows the measured aggregate RPC throughput

across all guests. When 50% of the guests burst at the same

time, Virtuoso can handle the bursts with only two cores

instead of the four cores forOvS-TAS and achieves 30% higher

throughput. With 75% overlap, three fast-path cores are

sufficient and during peak obtain 51% higher throughput

compared to OvS-TAS. At 100% burst overlap, we need all

4 cores are necessary to achieve the maximum throughput,

44% higher than OvS-TAS.

Our results show sharing the stack allows Virtuoso to

pool resources and thereby significantly improve resource

utilization and overall system efficiency. Virtuoso achieves

significantly higher throughput with fewer cores than the

baseline.

6.2 Fine-grained Scheduling Isolates VMs

Next, we evaluate Virtuoso ability to isolate guests despite

sharing a network stack and underlying resources. To that

end, we evaluate two main performance metrics, latency and

throughput, for a "victim" guest while a separate aggressor

guest attempts to introduce performance interference.

We evaluate two different forms of interference, by sepa-
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Fig. 7: Measuring performance isolation of a victim guest

from an aggressor guest with varying flows and messages

sizes. Virtuoso achieves tail latency on par with the siloed

OvS-TAS, and significantly higher throughput.

rately varying the number of aggressor connections and the

size of the aggressor messages. For the former the aggressor

uses a fixed message size of 64 bytes, and for the latter a fixed

number of 500 connections. The victim uses one connection

with 64 B messages for the latency measurements, and 500

connections with 64 B messages for the throughput measure-

ment. The victim uses a single core VM, while we provision

the aggressor VM with a core for every 500 connections.

Both victim and aggressor use the RPC echoserver.

We compare this workload across different system config-

urations. Virtuoso with two fast-path cores, OvS-TAS with

one additional fast-path core per guest VM for the TAS in-

stance, the guest Linux stack with OvS with no additional

guest cores. Finally, we also compare to native TAS by run-

ning victim and aggressor as separate processes on the host

connecting to the same TAS instance with two fast-path

cores. We use the timely [28] congestion control algorithm

in Virtuoso, OvS-TAS, and TAS. In all cases VMs, processes,

and network stacks are pinned to dedicated cores.

Fig. 7 shows the results. At a high level, the results confirm

that Virtuoso’s fine-grained isolation retains tail latencies

at the same level as siloed OvS-TAS, while significantly im-

proving victim throughput. TAS without isolation increases

tail-latency significantly as the aggressor’s message size in-

creases. Flow rate-limiting is able to mitigate rising tail-

latencies for TAS when an aggressor increases the number

of flows, but it still incurs tail latencies above Virtuoso and

OvS-TAS. For example, at 2500 aggressor connections Vir-

tuoso achieves a 99p latency of 90 µs, OvS-TAS’s 89 µs,and
TAS’s 129 µs. The benefits of fine-grained scheduling also

hold when comparing average latencies of the baselines. The

Virtuoso victim achieves 59 µs 50p latency when the aggres-

sor VM sends 1024 B messages, while the TAS and OvS-TAS

clients achieve 241 µs and 79 µs average latencies.
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Virtuoso Features Cycles
Scheduling VMs GRE / RPC Overhead

✗ ✗ ✗ 1 152

✓ ✗ ✗ 1 181 + 2.5%

✓ ✓ ✗ 1 263 + 9.6%

✓ ✓ ✓ 1 285 + 11.5%

Tab. 1: Request processing times for different Virtuoso fea-

tures relative to the native baseline (TAS).

We also measure similar results with the victim’s through-

put. TAS sees a decrease in throughput as the aggressor

VM increases the number of connections or message size.

With Virtuoso, the victim maintains similar throughput as

the aggressor attempts to acquire more resources, in all cases

higher than OvS-TAS. For 2500 aggressor connections, Vir-

tuoso achieves 65% higher throughput than OvS-TAS.

6.3 One-shot Processing Reduces Overhead

Now we evaluate how one-shot processing for network vir-

tualization affects overhead, latency, and throughput.

Virtualization overhead. First, we seek to measure and

break down the overheads of adding network virtualization

features to the network stack. For this, we start with the TAS

fast-path as the baseline and profile the number of processor

cycles required to process an RPC request including send-

ing the response. The application workload is saturating a

single Virtuoso core with 64 B RPCs. We then successively

add Virtuoso features, starting with scheduling, then VM

integration, and finally GRE tunneling.

Tab. 1 shows the results. Fine grained scheduling and

resource accounting adds around 30 cycles or 2.5% to each

RPC. Enabling VM integration adds 82 cycles, and finally

GRE tunneling adds another 22 cycles per RPC. In total,

the additional functionality in Virtuoso only adds a total of

133 cycles or 11.5% of overhead. We conclude that one-shot

processing is effective for avoiding expensive overhead for

significant additional network virtualization functionality.

Latency. These minimal overheads should translate to min-

imal latency increase for virtualized guests in Virtuoso com-

pared to TAS. We now measure the small 64 B RPC latency,

both for long-lived connections and short-lived connections

that only carry one RPC before closing and re-opening, also

including latency for establishment and tear-down. We

record latency distributions for all our system configurations

and report the results in Fig. 8.

With long flows Virtuoso achieves mean latencies of 5 µs
compared to 4 µs with bare-metal TAS, and 7 µs 99p latency

compared to 5 µs for TAS. OvS-TAS only achieves median la-

tencies of 11 µs and a 99p latency of 16 µs, both about a factor
of two higher than Virtuoso. Native Linux and Linux VMs
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Fig. 8: RPC latency distribution across different network

stacks. For long-lived connections Virtuoso adds minimal

overhead relative to TAS, while tail latency for short-lived

connections, the Virtuoso worst-case, remains competitive.

with OvS are both significantly worse, although interestingly

we found that the DPDK drivers in OvS seem to reduce over-

heads for compared to the native in-kernel drivers, thereby

surprisingly lowering the latency.

Short-lived connections are Virtuoso’ Achilles heel, as one-

shot connection state management optimizes for fast access

to established state at the cost of overhead for adding and

removing connections. The extreme case of connections that

send only one RPC before being torn down again, factoring

in complete time for establishment and tear-down, probes

this. For average latency Virtuoso is again only marginally

slower than TAS without OvS, at 8 µs compared to 6 µs and
far below OvS-TAS’ 14 µs. But in the tail Virtuoso shows 99p

latencies of 36 µs compared to TAS’ 15 µs. Tail latency is even
moderately higher than with OvS-TAS, although we suspect

that this is due to inefficiencies in the Virtuoso connector in

OvS that may be less optimized than the vhost-user port we

use for OvS-TAS. Linux is again far slower.

We conclude Virtuoso enables virtualized networkingwith

minimal latency overhead compared to unvirtualized stacks.

Throughput. One-shot virtualization processing also al-

lows Virtuoso to achieve high throughput, comparable to

bare metal performance. In Fig. 9 we dedicate the same num-

ber of cores to the networking stack in a client and server

machine running an RPC echo server. Server and client ap-

plications run on 12 cores each, and we dedicate 5 cores to

Virtuoso and TAS. We again measure throughput for short

and long-lived connections.

We first vary the number of messages per flow and mea-

sure throughput. The more expensive Virtuoso slow-path

is apparent for short-lived connections, but as more mes-

sages are sent per connection the gap between Virtuoso

and bare-metal solutions decreases. Virtuoso also achieves

throughput competitive with TAS for long-lived connections.

For 1024 B messages Virtuoso reaches throughput only 14%

lower than TAS, while OvS-TAS shows a performance drop of
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Fig. 9: Throughput with varying flow lengths and message

size. Virtuoso offers throughput close to the un-virtualized

TAS baseline, and much higher than other virtualized stacks.
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Fig. 10: Virtuoso significantly outperforms alternative stacks

even with many guests, and scales for cloud setups.

40%. Baselines with containers show that there is little to no

overhead between running Virtuoso in VMs (VM-Virtuoso)

as opposed to containers (Con-Virtuoso). Linux is again not

competitive. We conclude one-shot processing also enables

high-throughput virtualized network communication.

6.4 Virtuoso Scales to Many Guests

Finally, we evaluate guest scalability in Virtuoso. For each

run we provision two cores for each guest VM and measure

the aggregate throughput as the number of guests increases.

Each VM runs an RPC echoserver loaded 100 connections

sending 64 B messages. We use five fast-path cores for Vir-

tuoso with one polling core in OvS. In the OvS-TAS and

OvS-Linux baselines we assign six polling cores to OvS.

Fig. 10 shows the results. Virtuoso sees a steady increase

in throughput up to 12 guest VMs, while OvS-TAS and OvS-

Linux do not scale as well. At 12 VMs, Virtuoso achieves 260%

higher throughput than OvS-TAS and 500% higher through-

put than OvS-Linux. OvS-TAS needs at least one core for the

slow-path and one core for the fast-path, so in this setup TAS

cores inside a VM compete with the application for resources,

resulting in a smaller performance gain when compared to

OvS-Linux. We expect the small throughput drop past 12

guests is due to a sub-optimal polling implementation in the

Virtuoso fast-path that incurs overheads when polling too

many queues. We leave optimization of this as future work.

We conclude that at scale Virtuoso provides throughput sig-

nificantly above the alternatives and scales to the number of

guests on typical cloud servers.

7 Related Work

Shared hypervisor-level network stack. NetKernel [30]

proposes a fundamental re-design of the software stack for

virtual network processing, by extracting the network stack

from VMs and sharing it between multiple virtual machines

on the host. Nonetheless, NetKernel keeps virtual switching

and network virtualization separate separate from the rest

of the network stack. It also provides limited isolation and

does not evaluate support for microsecond latencies. Unfor-

tunately NetKernel is not available for comparison.

Container overlay networks. Container overlay net-

works [5, 11, 48] provide network virtualization features and

allow containers to communicate using their own indepen-

dent IP addresses. They often have large overheads because

packets have to traverse virtual switches and the network

stack twice. Slim [53] optimizes network virtualization for

containers and does not require packet transformations in

the data plane. However, it does so by completely avoid-

ing protocol-level network virtualization and instead sim-

ply sends packets on the physical network only translating

address info in socket calls. As a result, Slim only works

for networks that exclusively use Slim. Slim also does not

provide additional mechanisms over Linux for performance

isolation and lacks support for VM guests.

Mixed granularity scheduling. The Scout OS [29] de-

fines a path abstraction for data flow between a source and

end device. This abstraction can schedule work at different

path granularities, allowing schedulers to drop work if the

deadline for a path is not going to be met and separating be-

tween high and low priority work in the beginning of a path.

Nonetheless, Scout has not been designed for challenges of

the µs-scale modern workloads targeted by Virtuoso.

High-speed packet processing. Prior work has investi-

gated reducing overheads in software packet processing by

minimizing layer crossings. TAS [20] also splits operation

between a streamlined fast-path with dedicated cores and a

slow-path for control operations, but does not provide net-

work virtualization or performance isolation. Arrakis [34]

creates virtualized devices and lets applications conduct I/O

through these virtual devices without involving the kernel,

but does not provide the benefits of fully fledged network

virtualization. StackMap [50] and mTCP [18] both reduce

overheads from the socket API, but only one application can
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access a NIC port, thus forgoing opportunities for sharing

resources. Netmap [38] reduces the costs of moving traffic

between the hardware and the host stack. It can run inside

a virtual machine to reduce overhead, but does not address

the inneficient datapath packets traverse after leaving VMs.

8 Conclusion
With Virtuoso we have shown that network processing for

virtual machines and container environments can be im-

plemented efficiently in software. By sharing resources and

using fine-grained scheduling for isolation Virtuoso achieves

resource utilization far above other alternatives. And one-

shot network virtualization enables implementation of the

necessary virtualization functionality with minimal over-

head over optimized bare metal stacks. We expect that our

techniques can generalize to other protocols and implemen-

tation on other architectures, such as SoC-SmartNICs.
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